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Bayes and Kalman Filter 
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Combining Two Noisy Measurements 

2/26/2012 2 

 recall from the last lecture that the minimum variance 
estimate for combining two noisy measurements 
 
 
 

 
 

 
 

 claim: the estimate is a special case of the discrete Kalman 
filter algorithm 
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Discrete Kalman Filter 
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 estimates the state x of a discrete-time controlled process 
that is governed by the linear stochastic difference equation 
 
 
 
 
with a measurement 
 

tttttt uBxAx ε++= −1

tttt xCz δ+=

plant model 
process model 

measurement model 
observation model 
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Components of a Kalman Filter 

tε

Matrix (nxn) that describes how the state evolves from 
t to t-1 without controls or noise. tA

Matrix (nxl) that describes how the control ut changes 
the state from t to t-1. tB

Matrix (kxn) that describes how to map the state xt to 
an observation zt. 

tC

tδ

Random variables representing the process and 
measurement noise that are assumed to be 
independent and normally distributed with covariance 
Rt and Qt respectively. 
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Kalman Filter Algorithm  

1.  Algorithm Kalman_filter( µt-1, Σt-1, ut, zt): 
 

2.  Prediction: 
3.        
4.    

 
5.  Correction: 
6.        
7.   
8.   

9.  Return µt, Σt       

ttttt uBA += −1µµ

t
T
tttt RAA +Σ=Σ −1

1)( −+ΣΣ= t
T
ttt

T
ttt QCCCK

)( tttttt CzK µµµ −+=

tttt CKI Σ−=Σ )(



Combining Two Noisy Measurements 
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 combining two noisy measurements of a fixed scalar quantity 
is a static 1D-state estimation problem 
 the state does not evolve as a function of time and does not depend 

on any control input 

 
 
 
 

 our measurements are direct (noisy) measurements of the 
state 
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Combining Two Noisy Measurements 
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 start by initializing the Kalman filter with the first 
measurement and its variance 
 
 
 
 
 
 
 

 now substitute into the Kalman filter algorithm 

2
11

11

σ

µ

=Σ

= xestimated 
state 

estimated 
state 

covariance 



Plant or Process Model 

2/26/2012 8 

 describes how the system state changes as a function of time, 
control input, and noise 
 
 
     state at time t 
     control inputs at time t 
     process noise at time t (assumed Gaussian with covariance Rt) 
     state transition model or matrix at time t 
     control-input model or matrix at time t 

 note that the model is linear and assumes additive Gaussian 
noise 

tttttt uBxAx ε++= −1

tA

tu

kε

tx

tB



Measurement Model 
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 describes how sensor measurements vary as a function of the 
system state 
 
 
      sensor measurement at time t 
      sensor noise at time t (assumed Gaussian with covariance Qt) 
      observation model or matrix 

 notice that the model is linear and assumes additive Gaussian 
noise 

tttt xCz δ+=

tz
tδ
tC



Kalman Filter 
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 the Kalman filter is a provably optimal (in terms of least-
squared error) algorithm for fusing sensor measurements to 
produce an estimate of the state and the state covariance 
     state at time t 
     state covariance at time t tΣ

tx



 the Kalman filter estimates a process in two stages 
1. prediction: current state and state covariance estimates are 

projected forward in time to predict the new state and state 
covariance 

 “time update equations” 

2. correction: the sensor measurements are incorporated into the 
predicted state to obtain improved estimates of the state and state 
covariance 

 “measurement update equations” 

Kalman Filter 
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time update 
(predict) 

measurement update 
(correct) 



Kalman Filter Algorithm 
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1. Initialization  
 choose (guess) initial values for mean state and state covariance 

estimates 

0

0

Σ
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Kalman Filter Algorithm 
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2. Prediction:  
 predict the next state using the plant model 

 
 

 predicted state covariance grows (because we are not 
incorporating the sensor measurements yet) 
 
 

     covariance of the plant noise 

ttttt uBA += −1µµ

t
T
tttt RAA +Σ=Σ −1

tR



Kalman Filter Algorithm 
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3. Correction:  correct the predicted state using the sensor 
measurement 

 expected value of measurements (from measurement model) 
 
 

 difference between actual and expected measurements 
 
 

 measurement covariance 
 
 

 Kalman gain 

ttt Cz µ=

ttt zzr −=

t
T
tttt QCCS +Σ=

1−Σ= t
T
ttt SCK



Kalman Filter Algorithm 
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4. State and state covariance:  
 new state estimate incorporating most recent measurement 

 
 

 new state covariance estimate 

tttt rK+= µµ

( ) tttt CKI Σ−=Σ
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